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Abstract - This paper discusses about the instability of propagating hydromagnetic waves through the gaseous plasma in the 
presence of fine dust particles and under the influence of Hall effect. A general dispersion relation is obtained with the help of 
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1. Introduction - 
                             In recent years numerous investigators have been carried out an investigation on the various features 
of Jeans instability of infinite homogeneous gaseous plasma in the presence of various parameters. The Jeans 
instability is the fundamental concept of modern astrophysical plasma and it is connected with the fragmentation of 
interstellar matter in regard to star formations. The study of gravitational instability of an infinite homogeneous 
medium has been first carried out by James Jeans [1] and he shows that an infinite homogeneous self-gravitating fluid 
is unstable for all wave number which is less than critical Jeans wave number. A detailed contribution of self-
gravitational instability with different assumptions on the magnetic field and rotation has been given by 
Chandrasekhar [2]. In this connection, many investigators have discussed the gravitational instability of a 
homogeneous gaseous plasma considering the effect of various parameters [3-10].  
Along with this, the presence of fine dust particles plays an important role in the interstellar medium. The effects of 
the presence of fine dust particles, on the onset of Benard convection, on an infinite homogeneous gaseous medium 
has been investigated by a group of authors lead by Sharma [11], Sharma and Sharma [12], Sharma [13]]. 
It is clear from the above studies that more of the investigators have investigated the problem of gaseous plasma under 
the combined effects of viscosity, permeability, thermal conductivity, the presence of fine dust particles, finite electron 
inertia, Hall effect, porosity and rotation of the medium on the Jeans instability of gaseous plasma. Thus, in the present 
work, we are motivated to investigate the Jeans instability of gaseous plasma in the presence of finite electron inertia, 
fine dust particles, viscosity, porosity of the medium and thermal conductivity under the influence of Hall effect. 
 
2. Linearized Perturbation Equations:- 
                                                                   We consider an infinite homogeneous gaseous porous medium incorporating 
thermal conductivity, viscosity, permeability, Hall effect, rotation and finite electron inertia in the presence of fine 
dust particles and transverse magnetic field.  Linearized Perturbation Equations of the Problem are, 
 
𝛿𝛿𝑣𝑣
𝛿𝛿𝛿𝛿

 =  −
∇𝛿𝛿𝛿𝛿
𝜌𝜌

+ ∇𝛿𝛿φ +  
𝑘𝑘𝑠𝑠𝑁𝑁
𝜌𝜌

(𝑢𝑢 − 𝑣𝑣) + 𝜗𝜗 �∇2 −
1
𝑘𝑘1
� 𝑣𝑣 +

1
4𝜋𝜋𝜌𝜌

(∇ × ℎ) × 𝐻𝐻 + 2(𝑣𝑣 × Ω)           (1) 

𝜀𝜀
𝜕𝜕𝛿𝛿𝜌𝜌
𝜕𝜕𝛿𝛿

+ 𝜌𝜌∇. 𝑣𝑣 = 0                                                                                                                                         (2) 
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𝛿𝛿𝛿𝛿 =  𝐶𝐶2𝛿𝛿𝜌𝜌                                                                                                                                                   (3) 
 
∇2𝛿𝛿φ =  −4𝜋𝜋𝜋𝜋𝛿𝛿𝜌𝜌                                                                                                                                         (4) 
 

�𝜏𝜏
𝜕𝜕
𝜕𝜕𝛿𝛿

 + 1� 𝑢𝑢 =  𝑣𝑣                                                                                                                                        (5) 

 

𝜆𝜆∇2𝛿𝛿𝛿𝛿 =  𝜌𝜌𝐶𝐶𝑝𝑝
𝜕𝜕𝛿𝛿𝛿𝛿
𝜕𝜕𝛿𝛿

 −  
𝜕𝜕𝛿𝛿𝛿𝛿
𝜕𝜕𝛿𝛿

                                                                                                                        (6) 

 
𝛿𝛿𝛿𝛿
𝛿𝛿

 =  
𝛿𝛿𝛿𝛿
𝛿𝛿

 +  
𝛿𝛿𝜌𝜌
𝜌𝜌

                                                                                                                                            (7) 

 
𝜕𝜕ℎ
𝜕𝜕𝛿𝛿

 =  ∇ × (𝑣𝑣 × ℎ)  +
𝐶𝐶2

𝜔𝜔𝑝𝑝𝑝𝑝2
𝜕𝜕
𝜕𝜕𝛿𝛿
∇2ℎ −

𝐶𝐶
4𝜋𝜋𝑁𝑁𝑝𝑝

∇ × [(∇ × ℎ) × 𝐻𝐻]                                                        (8) 

 
 
Where, 

𝑣𝑣�𝑣𝑣𝑥𝑥 ,𝑣𝑣𝑦𝑦 , 𝑣𝑣𝑧𝑧�,𝑢𝑢�𝑢𝑢𝑥𝑥 ,𝑢𝑢𝑦𝑦 ,𝑢𝑢𝑧𝑧�,𝑁𝑁, 𝜌𝜌,𝛿𝛿, φ,𝐻𝐻(0,0,𝐻𝐻),Ω (Ω𝑥𝑥 , 0,Ω𝑧𝑧),𝛿𝛿,𝜋𝜋,𝜗𝜗, 𝑘𝑘1, 𝜀𝜀,𝐶𝐶𝑝𝑝 , 𝜆𝜆,𝑅𝑅, 
  𝜔𝜔𝑝𝑝𝑝𝑝 , 𝑘𝑘𝑠𝑠(6𝜋𝜋𝜋𝜋𝜋𝜋) 𝑎𝑎𝑎𝑎𝑎𝑎 ℎ�ℎ𝑥𝑥 ,ℎ𝑦𝑦 , ℎ𝑧𝑧�  denote respectively, the gas velocity, the particle velocity, the number 

density of the particle, density of the gas , pressure of the gas , Gravitational potential, magnetic field, rotation, 
temperature, Gravitational constant, kinematic viscosity,  permeability, porosity, specific heat at constant pressure, 
thermal conductivity, gas constant, plasma frequency of electron, the constant in the stokes drag formula and the 
perturbation in magnetic field. 𝜏𝜏 =  𝑚𝑚

𝑘𝑘𝑠𝑠
 is the relaxation time where  𝑚𝑚 is mass of a particle and  𝑚𝑚𝑁𝑁 = 𝜌𝜌𝑠𝑠 is density of 

particles. 
 
3. Dispersion Relation - 
                                       We analyze these perturbations with normal oscillation technique; we find the solution of 
equation (1)-(8). In a uniform system, we can find a plane-wave solution with all variables varying as, 
 
𝑝𝑝𝑥𝑥𝑝𝑝{𝑖𝑖(𝑘𝑘𝑥𝑥𝑥𝑥 + 𝑘𝑘𝑧𝑧𝑧𝑧 + 𝜔𝜔𝛿𝛿)}                                                                                                                            (9) 
 
Where 𝑘𝑘𝑥𝑥 , 𝑘𝑘𝑧𝑧  are the wave numbers of perturbation along the x and z-axis so that 𝑘𝑘𝑥𝑥2  +  𝑘𝑘𝑧𝑧2  =  𝑘𝑘2 and the frequency 
of harmonic disturbances, Using (2)-(9) in (1), we obtain the following algebraic equations for the components 

𝑀𝑀1𝑣𝑣𝑥𝑥  − �
𝑘𝑘𝑧𝑧2𝑉𝑉2𝑘𝑘2𝐴𝐴3

𝐴𝐴2
+ 2Ω𝑧𝑧� 𝑣𝑣𝑦𝑦  +  

𝑖𝑖𝑘𝑘𝑥𝑥
𝑘𝑘2 Ω𝛿𝛿

2 𝑠𝑠 = 0                                                                              (10) 

�
𝑘𝑘𝑧𝑧2𝑘𝑘2𝑉𝑉2𝐴𝐴3

𝐴𝐴2
+ 2Ω𝑧𝑧� 𝑣𝑣𝑥𝑥  + 𝑀𝑀2𝑣𝑣𝑦𝑦  − 2Ω𝑧𝑧𝑣𝑣𝑧𝑧     = 0                                                                               (11)  

2Ω𝑥𝑥𝑣𝑣𝑦𝑦  +  𝑎𝑎1𝑣𝑣𝑧𝑧  +
𝑖𝑖𝑘𝑘𝑧𝑧
𝑘𝑘2 Ω𝛿𝛿

2 𝑠𝑠 = 0                                                                                                               (12) 

The divergence of (1) with the aid of (2)-(9) gives 
 
𝑖𝑖𝑘𝑘𝑥𝑥𝑘𝑘2𝑉𝑉2𝐴𝐴1

𝐴𝐴2
𝑣𝑣𝑥𝑥 − �

𝑖𝑖𝑘𝑘𝑥𝑥𝑘𝑘𝑧𝑧2𝑉𝑉2𝑘𝑘2𝐴𝐴3

𝐴𝐴2
+ 2𝑖𝑖(𝑘𝑘𝑥𝑥Ω𝑧𝑧 −Ω𝑥𝑥𝑘𝑘𝑧𝑧)� 𝑣𝑣𝑦𝑦 − 𝑀𝑀3𝑠𝑠 = 0                                        (13) 

 

Where 𝑠𝑠 = 𝛿𝛿𝜌𝜌
𝜌𝜌

 is the condensation of the medium, 

𝛾𝛾 =  𝐶𝐶𝑝𝑝
𝐶𝐶𝑣𝑣

= 𝐶𝐶2

𝐶𝐶 ′2
 ratio of two specific heats,                                𝑉𝑉 = 𝐻𝐻

�4𝜋𝜋𝜌𝜌
is the Alfven velocity, 
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𝐴𝐴 =  𝑘𝑘𝑠𝑠𝑁𝑁
𝜌𝜌

 has the dimension of frequency,                             𝜏𝜏 =  𝑚𝑚
𝑘𝑘𝑠𝑠

 is the relaxation time, 

𝛽𝛽 = τA =  𝜌𝜌𝑠𝑠
𝜌𝜌

 is the mass condensation,                            𝜎𝜎 = 𝑖𝑖𝜔𝜔 is the growth rate of perturbation, 

𝜗𝜗𝑘𝑘 =  𝜗𝜗 �𝑘𝑘2 + 1
𝑘𝑘1
� ,     𝐴𝐴1 =  𝜎𝜎𝜎𝜎 ,     𝜎𝜎 =  �1 + 𝐶𝐶2𝐾𝐾2

𝜔𝜔𝑝𝑝𝑝𝑝
2 � ,       𝜃𝜃 = 𝜆𝜆

𝜌𝜌𝐶𝐶𝑝𝑝
 is the thermometric Conductivity, 

C and C’ are the adiabatic and isothermal velocities of sound. 

𝑎𝑎1 = �𝜎𝜎 + 𝜗𝜗𝑘𝑘 +
𝛽𝛽𝜎𝜎

𝜎𝜎𝜏𝜏 + 1
� , 𝑎𝑎2 = �

𝑘𝑘𝑧𝑧2𝑘𝑘2𝑉𝑉2𝐴𝐴3

𝐴𝐴2
+ 2Ω𝑧𝑧� ,        𝑎𝑎3 = �

𝑖𝑖𝑘𝑘𝑥𝑥𝑘𝑘𝑧𝑧2𝑘𝑘2𝑉𝑉2𝐴𝐴3

𝐴𝐴2
+ 2𝑖𝑖𝑀𝑀4�,  

Ω𝑗𝑗 ′
2 = �𝐶𝐶 ′2𝑘𝑘2 − 4𝜋𝜋𝜋𝜋𝜌𝜌�,           Ω𝑗𝑗2 = (𝐶𝐶2𝑘𝑘2 − 4𝜋𝜋𝜋𝜋𝜌𝜌)                       Ω𝛿𝛿

2 = �
𝜎𝜎Ω𝑗𝑗

2+𝛾𝛾𝑘𝑘Ω𝑗𝑗 ′
2

𝜎𝜎+𝛾𝛾𝑘𝑘
�, 

𝑀𝑀1 = �𝑎𝑎1 +
𝑉𝑉2𝑘𝑘2

𝐴𝐴1
�  ,                         𝑀𝑀2 = �𝑎𝑎1 +

𝑉𝑉2𝑘𝑘𝑧𝑧2

𝐴𝐴1
�  ,                          𝑀𝑀3 = �𝜀𝜀𝜎𝜎𝑎𝑎1 + Ω𝛿𝛿

2 �, 

𝑀𝑀4 = (𝑘𝑘𝑥𝑥Ω𝑧𝑧 −Ω𝑥𝑥𝑘𝑘𝑧𝑧),                          𝐴𝐴2 = (𝐴𝐴1
2 + 𝐴𝐴3

2𝑘𝑘𝑧𝑧2𝑘𝑘2),   𝛾𝛾𝑘𝑘 = 𝛾𝛾𝜃𝜃𝑘𝑘2,    𝐴𝐴3 = � 𝐶𝐶𝐻𝐻
4𝜋𝜋𝑁𝑁𝑝𝑝

�         

 

For nontrivial solution of equations (11)-(13), the determinant of the matrix obtained from coefficients  𝑜𝑜𝜎𝜎  𝑣𝑣𝑥𝑥 ,  𝑣𝑣𝑦𝑦 ,
𝑣𝑣𝑧𝑧  and s should vanish, which gives the following dispersion relation. 

�𝜎𝜎𝑎𝑎1 +  
Ω𝛿𝛿

2

𝜀𝜀
� �𝑀𝑀1 𝑀𝑀2𝑎𝑎1 + 4Ω𝑥𝑥

2𝑀𝑀1 + 𝑎𝑎1𝑎𝑎2
2� −

𝑘𝑘𝑥𝑥2𝑉𝑉2𝐴𝐴1

𝐴𝐴2

Ω𝛿𝛿
2

𝜀𝜀
� 𝑀𝑀2𝑎𝑎1 + 4Ω𝑥𝑥

2� − 2Ω𝑥𝑥𝑘𝑘𝑧𝑧  
Ω𝛿𝛿

2

𝜀𝜀
�
𝑖𝑖𝑀𝑀1𝑎𝑎3

𝑘𝑘2 +
𝑘𝑘𝑥𝑥𝐴𝐴1𝑎𝑎2

𝐴𝐴2
�

+
𝑖𝑖𝑘𝑘𝑥𝑥
𝑘𝑘2 𝑎𝑎1𝑎𝑎2𝑎𝑎3  

Ω𝛿𝛿
2

𝜀𝜀
 = 0                                                                                                                     (14) 

The dispersion relation (14) shows the combined influence of fine dust particles, thermal conductivity, finite electron 
inertia, magnetic field, viscosity, porosity, and rotation on the self-gravitational instability of a homogeneous Hall 
plasma. If we ignore the effect of finite electron inertia then (14) reduces to Chhajlani and Vyas (4). The present 
results are also similar to those of Chhajlani and Sanghvi (5) in the absence of rotation and finite electron inertia 
neglecting the contribution of finite Larmor radius (FLR) connection and Hall parameter in that case. In the absence of 
finite fine dust particles (14) give a similar result as are obtained by Prajapati et al.(6) excluding the effects of arbitrary 
radiative heat-loss functions, permeability, electrical resistivity and Hall effect in that case. 

4. Analysis of the Dispersion Relation -    

                                                              Now we shall discuss the dispersion relation given by equation (14) for 
different cases of rotation and propagation as follows. 

4.1. Axis of rotation parallel to the magnetic field (Ω ∥ 𝑯𝑯) - 

By taking the axis of rotation along the magnetic field i.e. Ω𝑥𝑥 = 0 and  Ω𝑧𝑧 = Ω , for the convenience, equations (14) 
reduces to 

�𝜎𝜎𝜀𝜀𝑎𝑎1 +  
Ω𝛿𝛿

2

𝜀𝜀
� �𝑀𝑀1 𝑀𝑀2𝑎𝑎1 + 𝑎𝑎1 �

𝑘𝑘𝑧𝑧2𝑘𝑘2𝑉𝑉2𝐴𝐴3

𝐴𝐴2
+ 2Ω�

2

� −
𝑘𝑘𝑥𝑥2𝑉𝑉2𝐴𝐴1

𝐴𝐴2

Ω𝛿𝛿
2

𝜀𝜀
𝑎𝑎1𝑀𝑀2

+
𝑖𝑖𝑘𝑘𝑥𝑥
𝑘𝑘2 𝑎𝑎1 �

𝑘𝑘𝑧𝑧2𝑘𝑘2𝑉𝑉2𝐴𝐴3

𝐴𝐴2
+ 2Ω��

𝑖𝑖𝑘𝑘𝑥𝑥𝑘𝑘𝑧𝑧2𝑘𝑘2𝑉𝑉2𝐴𝐴3

𝐴𝐴2
+ 2𝑖𝑖𝑘𝑘𝑥𝑥Ω�

Ω𝛿𝛿
2

𝜀𝜀
 = 0                                   (15) 

4.1.1. Longitudinal mode of propagation (𝑲𝑲 ∥ 𝑯𝑯) - 
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 For this case, we assume that all the perturbations are longitudinal to the direction of the magnetic field. (𝑖𝑖. 𝑝𝑝.   𝑘𝑘𝑥𝑥 =
0,     𝑘𝑘𝑧𝑧 = 𝑘𝑘). 

  Thus the dispersion relation (15) reduces to the simple form to give  

𝑎𝑎1 �𝑀𝑀1
2 + �2Ω +

𝑘𝑘4𝑉𝑉2𝐴𝐴3

𝐴𝐴2
�

2

� �𝜎𝜎𝑎𝑎1 +  
Ω𝛿𝛿

2

𝜀𝜀
�   = 0                                                                                               (16) 

The dispersion relation given by equation (16) has three factors. We will discuss them separately. In the above 
dispersion relation, the first factor equated to zero gives, 

𝜏𝜏𝜎𝜎2 + 𝜎𝜎{1 + 𝜏𝜏(𝐴𝐴 + 𝜗𝜗𝑘𝑘)} + 𝜗𝜗𝑘𝑘 = 0                                                                                                                        (17) 

The second factor equated to zero gives, 

𝐴𝐴7𝜎𝜎7 + 𝐴𝐴6𝜎𝜎6 + 𝐴𝐴5𝜎𝜎5 + 𝐴𝐴4𝜎𝜎4 + 𝐴𝐴3𝜎𝜎3 + 𝐴𝐴2𝜎𝜎2 + 𝐴𝐴1𝜎𝜎 + 𝐴𝐴0 = 0                                                            (18) 

The coefficients in above equation are very lengthy. The constant term is                                             

 𝐴𝐴0 = 𝑘𝑘8𝜗𝜗𝑘𝑘2𝐴𝐴3
4 + 4Ω2𝑘𝑘8𝐴𝐴3

4 + 4Ω 𝑘𝑘8𝑉𝑉2𝐴𝐴3
3 +   𝑘𝑘8𝑉𝑉4𝐴𝐴3

2   

The third factor equated to zero gives,        

𝜎𝜎4𝜏𝜏 + 𝜎𝜎3{1 + 𝜏𝜏(𝐴𝐴 + 𝜗𝜗𝑘𝑘)} + 𝜎𝜎2 �(𝜗𝜗𝑘𝑘 + 𝛾𝛾𝑘𝑘) + 𝜏𝜏 �
Ω𝑗𝑗

2

𝜀𝜀
+ 𝛾𝛾𝑘𝑘(𝐴𝐴 + 𝜗𝜗𝑘𝑘)�� + 𝜎𝜎 �

Ω𝑗𝑗
2

𝜀𝜀
+ 𝜗𝜗𝑘𝑘𝛾𝛾𝑘𝑘 + 𝜏𝜏𝛾𝛾𝑘𝑘

Ω𝑗𝑗 ′
2

𝜀𝜀
� + 𝛾𝛾𝑘𝑘

Ω𝑗𝑗 ′
2

𝜀𝜀
 = 0 (19) 

This is four-degree polynomial equations and shows the combined influence of fine dust particles, porosity, viscosity, 
rotation, magnetic field, thermal conductivity and heat loss functions in the transverse mode of propagation when the 
axis of rotation is parallel to the direction of magnetic field. 

4.1.2. Transverse Mode of Propagation (𝑲𝑲⊥ 𝑯𝑯) - 

    For this case, we assume all the perturbations are transverse to the direction of the magnetic field(𝑖𝑖. 𝑝𝑝. 𝑘𝑘𝑥𝑥 =
𝑘𝑘,    𝑘𝑘𝑧𝑧 = 0).  Thus the dispersion relation (15) reduces to the simple form to give, 

𝑎𝑎1
2 �𝜎𝜎𝑎𝑎1

2 + 𝑎𝑎1 �
Ω𝛿𝛿

2

𝜀𝜀
+
𝜎𝜎𝑘𝑘2𝑉𝑉2

𝐴𝐴1
� + 4Ω2𝜎𝜎� = 0                                                                                                  (20)           

 

This dispersion relation is the product of two independent factors. These factors show the mode of propagations 
incorporating different parameters as discussed below. The first factor of this dispersion relation is stable mode as 
discussed in the previous case and the second factor of the dispersion relations (20), after simplification can be written 
as 
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𝜎𝜎6𝜏𝜏2𝜎𝜎 + 𝜎𝜎5𝜏𝜏𝜎𝜎{2 + 𝜏𝜏(2𝐴𝐴 + 2𝜗𝜗𝑘𝑘 + 𝛾𝛾𝑘𝑘)}

+ 𝜎𝜎4 �𝜏𝜏2𝜎𝜎 �
Ω𝑗𝑗

2

𝜀𝜀
+ 𝐴𝐴𝛾𝛾𝑘𝑘 + (𝐴𝐴 + 𝜗𝜗𝑘𝑘)(𝐴𝐴 + 𝜗𝜗𝑘𝑘 + 𝛾𝛾𝑘𝑘)� + 2𝜏𝜏𝜎𝜎{1 + (𝐴𝐴 + 2𝜗𝜗𝑘𝑘 + 𝛾𝛾𝑘𝑘)}�

+ 𝜎𝜎3 �𝜏𝜏2𝜎𝜎 �(𝐴𝐴 + 𝜗𝜗𝑘𝑘)
Ω𝑗𝑗

2

𝜀𝜀
+ 𝜗𝜗𝑘𝑘2 + 𝛾𝛾𝑘𝑘 �

Ω𝑗𝑗 ′
2

𝜀𝜀
+ 𝐴𝐴2��

+ 𝜏𝜏 �𝛾𝛾𝑘𝑘 �2𝜎𝜎
Ω𝑗𝑗 ′

2

𝜀𝜀
+ 𝑘𝑘2𝑉𝑉2 + 4Ω2𝜎𝜎� + (𝐴𝐴 + 𝜗𝜗𝑘𝑘)�𝜎𝜎

Ω𝑗𝑗
2

𝜀𝜀
+ 𝑘𝑘2𝑉𝑉2� + 𝜎𝜎𝜗𝜗𝑘𝑘 �

Ω𝑗𝑗
2

𝜀𝜀
+ 𝜗𝜗𝑘𝑘𝛾𝛾𝑘𝑘 + 𝛾𝛾𝑘𝑘��

+ 𝜎𝜎(2𝜗𝜗𝑘𝑘 + 𝛾𝛾𝑘𝑘)�

+ 𝜎𝜎2 �𝜏𝜏2(𝐴𝐴 + 𝜗𝜗𝑘𝑘)�𝜎𝜎𝛾𝛾𝑘𝑘
Ω𝑗𝑗 ′

2

𝜀𝜀
�

+ 𝜏𝜏 �𝛾𝛾𝑘𝑘 �2𝜎𝜎
Ω𝑗𝑗 ′

2

𝜀𝜀
+ 𝑘𝑘2𝑉𝑉2 + 4Ω2𝜎𝜎� + (𝐴𝐴 + 𝜗𝜗𝑘𝑘)�𝜎𝜎

Ω𝑗𝑗
2

𝜀𝜀
+ 𝑘𝑘2𝑉𝑉2 + 𝜗𝜗𝑘𝑘 + 𝛾𝛾𝑘𝑘� + 𝜗𝜗𝑘𝑘𝜎𝜎 �

Ω𝑗𝑗
2

𝜀𝜀
+ 𝜗𝜗𝑘𝑘𝛾𝛾𝑘𝑘��

+ �𝜎𝜎
Ω𝑗𝑗

2

𝜀𝜀
+ 𝑘𝑘2𝑉𝑉2 + 𝜗𝜗𝑘𝑘 + 𝛾𝛾𝑘𝑘� + 𝜎𝜎𝜗𝜗𝑘𝑘(𝜗𝜗𝑘𝑘 + 2𝛾𝛾𝑘𝑘)�

+ 𝜎𝜎 �𝜏𝜏 �𝛾𝛾𝑘𝑘(𝐴𝐴 + 𝜗𝜗𝑘𝑘)�
Ω𝑗𝑗 ′

2

𝜀𝜀
+ 𝑘𝑘2𝑉𝑉2� + 𝜗𝜗𝑘𝑘𝛾𝛾𝑘𝑘𝜎𝜎

Ω𝑗𝑗 ′
2

𝜀𝜀
� + 𝛾𝛾𝑘𝑘 �𝜎𝜎

Ω𝑗𝑗 ′
2

𝜀𝜀
+ 𝑘𝑘2𝑉𝑉2 + 4Ω2𝜎𝜎�

+ 𝜗𝜗𝑘𝑘 �𝜎𝜎
Ω𝑗𝑗

2

𝜀𝜀
+ 𝑘𝑘2𝑉𝑉2 + 𝜎𝜎𝜗𝜗𝑘𝑘𝛾𝛾𝑘𝑘�� + 𝜗𝜗𝑘𝑘𝛾𝛾𝑘𝑘 �𝜎𝜎

Ω𝑗𝑗 ′
2

𝜀𝜀
+ 𝑘𝑘2𝑉𝑉2�  = 0                                       (21) 

This is six degree polynomial equation and shows the combined influence of fine dust particle, thermal conductivity, 
viscosity, finite electron inertia and porosity.  

4.2. Axis of rotation perpendicular to the magnetic field (Ω⊥ 𝑯𝑯):- 

In this case, when the axis of rotation is perpendicular to the magnetic field, we put Ω𝑥𝑥 = Ω   𝑎𝑎𝑎𝑎𝑎𝑎  Ω𝑧𝑧 = 0  in the 
dispersion relation (14) and this gives, 

�𝜎𝜎𝑎𝑎1 +  
Ω𝛿𝛿

2

𝜀𝜀
� �𝑀𝑀1 𝑀𝑀2𝑎𝑎1 + 4Ω2𝑀𝑀1 + 𝑎𝑎1 �

𝑘𝑘𝑧𝑧2𝑘𝑘2𝑉𝑉2𝐴𝐴3

𝐴𝐴2
�

2

� −
𝑘𝑘𝑥𝑥2𝑉𝑉2𝐴𝐴1

𝐴𝐴2

Ω𝛿𝛿
2

𝜀𝜀
�𝑎𝑎1𝑀𝑀2 + 4Ω2�

− 2Ω 𝑘𝑘𝑧𝑧  
Ω𝛿𝛿

2

𝜀𝜀
�
𝑖𝑖𝑀𝑀1

𝑘𝑘2 �
𝑖𝑖𝑘𝑘𝑥𝑥𝑘𝑘𝑧𝑧2𝑘𝑘2𝑉𝑉2𝐴𝐴3

𝐴𝐴2
− 2𝑖𝑖Ω 𝑘𝑘𝑧𝑧� +

𝑘𝑘𝑥𝑥𝐴𝐴1

𝐴𝐴2
�
𝑘𝑘𝑧𝑧2𝑘𝑘2𝑉𝑉2𝐴𝐴3

𝐴𝐴2
��

+
𝑖𝑖𝑘𝑘𝑥𝑥
𝑘𝑘2 𝑎𝑎1 �

𝑘𝑘𝑧𝑧2𝑘𝑘2𝑉𝑉2𝐴𝐴3

𝐴𝐴2
�  �

𝑖𝑖𝑘𝑘𝑥𝑥𝑘𝑘𝑧𝑧2𝑘𝑘2𝑉𝑉2𝐴𝐴3

𝐴𝐴2
− 2𝑖𝑖Ω 𝑘𝑘𝑧𝑧�

Ω𝛿𝛿
2

𝜀𝜀
 = 0                                        (22) 

4.2.1. Longitudinal mode of propagation (𝑲𝑲 ∥ 𝑯𝑯):- 

 For this case, we assume that all the perturbations are parallel to the direction of the magnetic field (𝑖𝑖. 𝑝𝑝.   𝑘𝑘𝑥𝑥 =
0,     𝑘𝑘𝑧𝑧 = 𝑘𝑘). 

  Thus the dispersion relation (22) reduces to the simple form to give  

𝑎𝑎1 �𝑀𝑀1 �𝜎𝜎𝑎𝑎1 +  
Ω𝛿𝛿

2

𝜀𝜀
�𝑀𝑀1 + 4Ω2𝜎𝜎 +

𝑘𝑘8𝑉𝑉4𝐴𝐴3
2

𝐴𝐴2
2 �𝜎𝜎𝑎𝑎1 +  

Ω𝛿𝛿
2

𝜀𝜀
�� = 0                                                                    (23) 

This dispersion relation is the product of two independent factors. These factors show the mode of propagations 
incorporating different parameters as discussed below. The first factor of this dispersion relation is stable mode as 
discussed in the previous case and the second factor of the dispersion relations (23) after simplification can be written 
as 

𝜎𝜎9 + 𝐴𝐴8𝜎𝜎8 + 𝐴𝐴7𝜎𝜎7 + 𝐴𝐴6𝜎𝜎6 + 𝐴𝐴5𝜎𝜎5 + 𝐴𝐴4𝜎𝜎4 + 𝐴𝐴3𝜎𝜎3 + 𝐴𝐴2𝜎𝜎2 + 𝐴𝐴1𝜎𝜎 + 𝐴𝐴0  = 0                             (24) 
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The coefficients in above equation are very lengthy. The constant term is                                             

𝐴𝐴0 = 𝑘𝑘8𝐴𝐴3
4𝜗𝜗𝑘𝑘2𝛾𝛾𝑘𝑘

Ω𝑗𝑗 ′
2

Ԑ
+ 𝑘𝑘8𝑉𝑉4𝐴𝐴3

2𝛾𝛾𝑘𝑘
Ω𝑗𝑗 ′

2

Ԑ
 

4.2.2. Transverse Mode of Propagation(𝑲𝑲⊥ 𝑯𝑯):- 

    For this case, we assume all the perturbations perpendicular to the direction of the magnetic field(𝑖𝑖. 𝑝𝑝. 𝑘𝑘𝑥𝑥 =
𝑘𝑘,    𝑘𝑘𝑧𝑧 = 0).  Thus the dispersion relation (22) reduces to the simple form to give, 

𝑎𝑎1�𝑎𝑎1
2 + 4Ω2� �𝑀𝑀1𝜎𝜎 +

Ω𝛿𝛿
2

𝜀𝜀
� = 0                                                                                                                              (25) 

The dispersion relation given by equation (25) has three factors. We will discuss them separately. The first factor of 
this dispersion relation is stable mode as discussed in the previous case and the second factor of the dispersion 
relations (25), after simplification can be written as 

𝜎𝜎4𝜏𝜏2 + 2𝜎𝜎3𝜏𝜏{1 + 𝜏𝜏(𝐴𝐴 + 𝜗𝜗𝑘𝑘)} + 𝜎𝜎2�{1 + 𝜏𝜏(𝐴𝐴 + 𝜗𝜗𝑘𝑘)}2 + 𝜏𝜏�2𝜗𝜗𝑘𝑘 + 𝜏𝜏4Ω2�� + 𝜎𝜎�2𝜗𝜗𝑘𝑘{1 + 𝜏𝜏(𝐴𝐴 + 𝜗𝜗𝑘𝑘)} + 𝜏𝜏8Ω2� + 𝜗𝜗𝑘𝑘2

+ 4Ω2  = 0                                                                                                                                      (26) 

 

The third factor equated to zero gives,        

 𝜎𝜎4𝜏𝜏𝜎𝜎 + 𝜎𝜎3𝜎𝜎{1 + 𝜏𝜏(𝐴𝐴 + 𝜗𝜗𝑘𝑘 + 𝛾𝛾𝑘𝑘)} + 𝜎𝜎2 �𝜎𝜎(𝜗𝜗𝑘𝑘 + 𝛾𝛾𝑘𝑘) + 𝜏𝜏 �𝜎𝜎
Ω𝑗𝑗

2

Ԑ
+ 𝑘𝑘2𝑉𝑉2 + 𝜎𝜎𝛾𝛾𝑘𝑘(𝐴𝐴 + 𝜗𝜗𝑘𝑘)�� + 𝜎𝜎 �

Ω𝑗𝑗
2

Ԑ
+ 𝑘𝑘2𝑉𝑉2 +

𝜎𝜎𝛾𝛾𝑘𝑘𝜗𝜗𝑘𝑘� + 𝜏𝜏𝛾𝛾𝑘𝑘 �𝜎𝜎
Ω𝑗𝑗 ′

2

Ԑ
+ 𝑘𝑘2𝑉𝑉2� + 𝛾𝛾𝑘𝑘 �𝜎𝜎

Ω𝑗𝑗 ′
2

Ԑ
+ 𝑘𝑘2𝑉𝑉2�  = 0                                                                                       (27) 

 

This is a four-degree polynomial equation and shows the combined influence of various parameters such as presence 
of fine dust particles, viscosity, porosity, rotations, magnetic field, thermal conductivity and heat loss functions in the 
transverse mode of propagation, when the axis of rotation is perpendicular to the direction of magnetic field. 

 

5. Conclusions:- 

In this paper, we have studied about the propagating hydromagnetic waves and Jeans instability of infinite 
homogeneous gaseous plasma under the influence of thermal conductivity, viscosity, permeability, finite electron 
inertia, the porosity of the medium, rotation, Hall effect in the presence of fine dust particles and transverse magnetic 
field. The axis of rotation has been taken parallel and perpendicular to the vertical magnetic field and it is further 
reduced in the longitudinal and transverse mode of propagation. Owing to the inclusion of the thermal conductivity the 
isothermal sound velocity is replaced by the adiabatic velocity of sound. 
The effects of the permeability and viscosity are found to stabilizing the system in both the longitudinal and transverse 
mode of propagation. In the transverse mode of propagation, we have obtained Alfven mode which is modified by the 
presence of finite electron inertia, the presence of fine dust particles, porosity, viscosity, permeability and thermal 
conductivity. In the absence of fine dust particles with some assumptions such as viscosity and rotational parameters 
are small the rotational parameter is more dominated for a hydromagnetic wave with the period as compared to the 
period of revolutions of the system. 
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